Monodromy Filtrations and the Topology of Tropical Varieties
نویسنده
چکیده
We find restrictions on the topology of tropical varieties that arise from a certain natural class of varieties. We develop a theory of tropical degenerations that is a nonconstant coefficient analogue of Tevelev’s theory of tropical compactifications, and use it to construct normal crossings degenerations of a subvariety X of a torus, under mild hypotheses on X. These degenerations allow us to construct a natural, “multiplicity-free” parameterization of Trop(X) by a topological space ΓX . We give a geometric interpretation of the cohomology of ΓX in terms of the action of a monodromy operator on the cohomology of X. This gives bounds on the Betti numbers of ΓX in terms of the Betti numbers of X. When X is a sufficiently general complete intersection, this allows us to show that the cohomology of Trop(X) vanishes in degree less than dimX.
منابع مشابه
Monodromy Map for Tropical Dolbeault Cohomology
We define monodromy maps for tropical Dolbeault cohomology of algebraic varieties over non-Archimedean fields. We propose a conjecture of Hodge isomorphisms via monodromy maps, and provide some evidence.
متن کاملComputing complex and real tropical curves using monodromy
Tropical varieties capture combinatorial information about how coordinates of points in a classical variety approach zero or infinity. We present algorithms for computing the rays of a complex and real tropical curve defined by polynomials with constant coefficients. These algorithms rely on homotopy continuation, monodromy loops, and Cauchy integrals. Several examples are presented which are c...
متن کاملEquivariant Characteristic Classes of Singular Complex Algebraic Varieties
Homology Hirzebruch characteristic classes for singular varieties have been recently defined by Brasselet-Schürmann-Yokura as an attempt to unify previously known characteristic class theories for singular spaces (e.g., MacPherson-Chern classes, BaumFulton-MacPherson Todd classes, and Goresky-MacPherson L-classes, respectively). In this note we define equivariant analogues of these classes for ...
متن کاملThe Frobenius and Monodromy Operators for Curves and Abelian Varieties
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Part I. Definitions of the operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. Definitions of N and F for curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. The monodromy ope...
متن کاملTopology/alg. Geometry Seminar
1PM: Oleg Viro (Stony Brook). Multifields (fields with multivalued addition), base fields of tropical geometries. Abstract:In many classical number sets (e.g., complex numbers, real numbers and non-negative real numbers), there are remarkable structures of multifield. Replacing the tropical max-plus semifield in the foundations of tropical geometry by a multifield simplifies the structure of tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008